Efficient Dual Algorithms for Image Segmentation Using TV-Allen-Cahn Type Models
نویسندگان
چکیده
Variational image segmentation based on theMumford and Shahmodel [31], together with implementation by the piecewise constant level-setmethod (PCLSM) [26], leads to fully nonlinear Total Variation (TV)-Allen-Cahn equations. The commonlyused numerical approaches usually suffer from the difficulties not only with the nondifferentiability of the TV-term, but alsowith directly evolving the discontinuous piecewise constant-structured solutions. In this paper, we propose efficient dual algorithms to overcome these drawbacks. The use of a splitting-penalty method results in TVAllen-Cahn type models associated with different ”double-well” potentials, which allow for the implementation of the dual algorithm of Chambolle [8]. Moreover, we present a new dual algorithm based on an edge-featured penalty of the dual variable, which only requires to solve a vectorial Allen-Cahn type equation with linear ∇(div)-diffusion rather than fully nonlinear diffusion in the Chambolle’s approach. Consequently, more efficient numerical algorithms such as time-splitting method and Fast Fourier Transform (FFT) can be implemented. Various numerical tests show that two dual algorithms are much faster and more stable than the primal gradient descent approach, and the new dual algorithm is at least as efficient as the Chambolle’s algorithm but is more accurate. We demonstrate that the new method also provides a viable alternative for image restoration. AMS subject classifications: 65N22, 65N55, 74S20, 49J40
منابع مشابه
Adaptive wavelet collocation methods for image segmentation using TV-Allen-Cahn type models
An adaptive wavelet-based method is proposed for solving TV(total variation)–Allen–Cahn type models for multi-phase image segmentation. The adaptive algorithm integrates (i) grid adaptation based on a threshold of the sparse wavelet representation of the locally-structured solution; and (ii) effective finite difference on irregular stencils. The compactly supported interpolating-type wavelets e...
متن کاملA Numerical Method for the Modified Vector-valued Allen–cahn Phase-field Model and Its Application to Multiphase Image Segmentation
In this paper, we present an efficient numerical method for multiphase image segmentation using a multiphase-field model. The method combines the vector-valued Allen– Cahn phase-field equation with initial data fitting terms containing prescribed interface width and fidelity constants. An efficient numerical solution is achieved using the recently developed hybrid operator splitting method for ...
متن کاملPrimal-dual active set methods for Allen-Cahn variational inequalities
This thesis aims to introduce and analyse a primal-dual active set strategy for solving Allen-Cahn variational inequalities. We consider the standard Allen-Cahn equation with non-local constraints and a vector-valued Allen-Cahn equation with and without non-local constraints. Existence and uniqueness results are derived in a formulation involving Lagrange multipliers for local and non-local con...
متن کاملColour image segmentation by the vector-valued Allen-Cahn phase-field model: a multigrid solution
We present an efficient numerical solution of a PDE-driven model for color image segmentation and give numerical examples of the results. The method combines the vector-valued Allen-Cahn phase field equation with initial data fitting terms with prescribed interface width and fidelity constants. Efficient numerical solution is achieved using a multigrid splitting of a finite element space, there...
متن کاملThree-dimensional volume reconstruction from slice data using phase-field models
We propose the application of a phase-field framework for three-dimensional volume reconstruction using slice data. The proposed method is based on the Allen–Cahn and Cahn–Hilliard equations, and the algorithm consists of two steps. First, we perform image segmentation on the given raw data using a modified Allen– Cahn equation. Second, we reconstruct a three-dimensional volume using amodified ...
متن کامل